
Acta Académica 14 Mayo 2000

__

C Iterators

Adolfo Di Mare*

___ ___ ___ __

__ ___ ___ ___

 As many others, I have watched C++ grow from

cute and slim into a fat computer language. When

Stroustrop originally proposed his language, it had

no pointers to member, exceptions, templates or

namespaces [Str-88], but C++ was nonetheless a

huge improvement over C: many useful programs

are much shorter if written in C++ instead of C. That

is why we deam C++ as a more expressive

language. Being a programmer, I always wonder

whether all this C++ power is really needed.

Besides, given C+ +'s sheer size, chances are

always higher to find a C compiler. This makes it

very interesting to implement algorithms in C.

 After being exposed to the Standard Template

Library [STL], mainly by the detailed articles written

by P.J. Plauger, [Pla-96a] & [Pla-96b], I decided to

explore the possibility of implementing in C some of

* Adolfo Di Mare: Investigador costarricense en la Escuela de Ciencias

de la Computación e Informática [ECCI] de la Universidad de Costa Rica

[UCR]. en donde ostenta el rango de Profesor Catedrático. Trabaja en

tecnologías de Programación e Internet. Es Maestro Tutor del Stvdivm

Generale de Ia Universidad Autónoma de Centro America [UACA], en

donde ostenta el rango de Catedrático y funge como Consiliario

Académico. Obtuvo la Licenciatura en la Universidad de Costa Rica, la

Maestría en

Ciencias en la

Universidad de

California [UCLA], y

el Doctorado (PhD)

en la Universidad

Autónoma de

Centroamérica.

Correo electrónico:

adolfo@di-

mare.com

the better ideas shown in the STL, using less

resource. I thought that this would help in two ways:

it could give my readers a better insight on how STL

is bolted together, and it could make available STL

technology to those who resist using C++ due to its

size and complexity.

 When faced with scarcity we have to squeeze

every ounce of ingenuity to find a solution. That is

why I like doing things the hard way, to get a better

insight in how to achieve results, and oftentimes to

find a more efficient solution. Recall that Alexander

Stepanov, the STL's main architect, had the

opportunity to change C++ to accommodate for his

special needs [Ste-95]. Maybe a less favorable

environment would have lead to a slimmer C+ +.

 Listing 1 is my implementation of program c-iter.

c, that uses a parametrized list and a few iterators.

The main work is done in routine traverse (&L, & I),

also shown in Figure 1, where list "L" is printed in the

order determined by iterator "I". In case you have not

heard, an iterator is just a smart pointer into a

container; iterators are usefull because they provide

efficient access to the values stored in the container,

but relieve the programmer from knowing the

innards of the implementation.

 Look into the implementation of traverse (&L, &I)

and you will see that it has only a for (; ;) cycle where

four functions are invoked, each of which has the

usual role in these type of cycle:

Figure 1: Printing a list

C is powerful enough

to efficiently Access

containers through

iterators.

C es suficientemente

poderoso para accesar

contenedores

eficientemente usando

iteradores.

Resume

n

Abstract

mailto:adolfo@di-mare.com
mailto:adolfo@di-mare.com

Acta Académica 15 Mayo 2000

1. Setup: I->bind ()

2. Cycle condition: I->finished ()

3. Advance: I->next ()

4. Use value: I-> here ()

Figure 2: Printing array A []

 Figure 2 is the code used to print the values

stored in array A []. Compare this code with the

implementation of traverse (&L, &I) and you will

notice that these two for (;;) cycles are pretty similar.

This fact is made explicit in the first columns in Table

1.

 When run, c-iter will store some values in list "L",

and then print them in different orders. Each iterator

provides access to "L" in a different way: "Iforw"

traverses "L" from its first value to the last, whereas

"Iback" goes from the last to the first. The last

iterator, "Iorder", yields all the values in order, from

smaller to bigger. What makes traverse ()

interesting is that the same function will yield values

in different orders: this is code reutilization, the

polimorphic way.

 The trick used to change dramatically traverse

()'s behaviour is to use function point-ers. Hence, the

code I->next (I) actually in-vokes the function

pointed to by field "next" stored within “*I”; when a

different iterator :s used, it will contain a different

function pointer, and thus traverser's behaviour

would be changed: no black magic, just pointer

juggling.

A list class

 I had to implement a list class in C to use with

these iterators. I chose the implementation that

would require less code, even though my favorite

has always been the circular singled linked list,

because it lets you append and prepend in constant

time. Listing 2 is the header file list .h, and Listing 3

is its implementation list. c. As usual, this linked list

is implemented using nodes where values get

stored. I use pointer type "lpos" to shield the client

programmer of list. h from the implementation. This

means that the list operations, for example list count

() or list append (), take pointer arguments of type

"lpos", but such a pointer cannot be used to access

a stored value by itself: it must be type casted into a

node pointer, of type "list node".

 All this might seem strange, but I tried to make

list into a trully polimorphic and parametric type,

meaning that lists that contain different element

types will share the same implementation. This is a

contrast to using a C++ <list> template, because

template instantiation usually yields different

versions of the same algorithm for each element

type. When initialized with init_list (), any list variable

must be passed the element size, which will be later

used to create a node big enough to hold the linked

list pointer "next", and the element value. This

implementation is not complete, because it will not

handle element types that require special

construction or destruction, but in good enough form

many applications. The price paid to achieve

polymorphism is lack of type checking, because the

list operations that store values take typeless

arguments (void*).

Acta Académica 16 Mayo 2000

 A

function

defined in list. h that deserves special discussion is

list retrieve (&L, p), because it transforms a list

position "lpos", into a pointer to the stored value in a

node. It returns a typeless pointer (void*) because

lists contain elements of unknown type, and it is up

to the programmer to typecast this pointer into the

proper pointer type. This explains why in the

implementation of traverse () in Figure 1, the value

returned by I—>here () must be type casted

explicitly into a (*long) before using it.

 I included just enough operations in list. h to

have the code compile and run. Some of the

operations in list. h are implemented as macros, to

achieve the efficiency of C++ inline functions. You

can download all this code, including another list

implementation that uses arrays instead of node

pointers.

Iterators

 As C lacks Object Oriented Programming [OOP]

facilities, it is oftentimes difficult to express some

algorithms. I had to use the macro processor to

overcome this restriction, following a bit the

approach suggested in [BSG-92], the result being

header file iterator, h, shown in Listing 4. In there,

macro itr () is defined so that the invocation:

 !itr (I, finished);

translates into:

Every iterator contains a field, called "vmt", where all

the pointers to iteration functions are stored. In OOP

parlance, VMT stands for "Virtual Method Table",

which is a vector of pointer to functions. The macro

define_itr_vmt () is used to define all the pointer

fields that point into the iterator operations.

 Listing 5 is the header file forwl. h, that contains

the definition for the "list forward" iterator type; its

implementation is shown as Listing 6. Macro

invocation itr_vmt (list) is used to define the iterator's

"vmt" field. Other fields are a pointer to the list, and

a "lpos" marking the iterator's current position in the

list. It is necessary to keep a pointer to the list

because, for brevity and easy of use, the iterator

operations finished(), here(), etc., do not take a list

argument. For this definition of list forward a "typed

struct" is used because C lacks classes, which

makes mandatory to use typed to avoid carrying

around the keyword struct when declaring aggregate

fields like "vmt".

 The result of the macro invocations used to

define the fields in a forward iterator is shown in

LINK Figure 3. Field "vmt" contains all the function

pointers to run the iterator, while the other fields are

used to store its current state.

Acta Académica 17 Mayo 2000

 If you are of the observing type, by now you would

have noticed that, in program c-iter. c (see Figure 4),

sometimes the iterator itself is used as an argument,

as in

 init_forward (&Iforw);

whereas in other cases the iterator's VMT is used

instead:

 done_forward (Slforw.vmt);

 Why this disparity? The answer lies in C's lack of

support for OOP. In any language that supports

inheritance, every iterator would be derived from a

general "Iterator" class. To fake the same in C, in

every iterator instance we need to include a field,

precisely "vmt", where the common inherited fields

get stored. Hence, we achieve the effect of

inheritance by passing around as argument the

common "vmt" field. This also explains the need to

invoke macro vmt self () in the implementation of

each iterator operation. Look, for example, into the

implementation of finished forward () in Listing 6,

where the pointer to the iterator VMT "si.vmt" is

transformed into a pointer to the iterator itself "&I" at

the very beginning:

list forward *I = vmt self (list forward, Ivmt); From

there on, "I" points to a full" list forward", that

contains both "I->p" and "I->L" besides the "vmt"

field.

Usage styles

 To use an iterator in a program, the easier way

is to invoke its operations through the itr() macro,

defined in iterator. h. However, to pass it around as

a polymorphic argument, it is necessary to use the

"vmt" field.

 Figure 4 is the usual usage of an iterator. After

initializing it, macro itr () is used to invoke each of

the iteration operations. As the list is typeless, the

programmer must take special care to convert the

position pointers returned by the here () into the

proper value pointer.

 The other usage style was used to implement

traverse () as in Figure 1. The iterator's "vmt" field is

passed as the argument, and inside the function a

different syntax is required to access the iterator

operations, as is shown in the last two columns of

Table 1. The syntax requires naming the iterator

twice: one to access the pointer to function field, and

the other to pass the iterartor itself; in any OOP

language, the later is the C+ + "this" pointer. To my

taste, the code does not look that bad, but you could

always define (yet) another macro in iterator. h to

avoid this duplicity.

 In OOP languages each object instance does

not contain a full copy of the VMT, as it is the case

in my implementation, but a pointer to a shared VMT.

I decided to ease up on this, as not that many

Acta Académica 18 Mayo 2000

iterators are used in a program, which makes the

increased storage requirements of my

implementation negligible. Besides, in this way I am

saving the extra pointer indirection required to jump

from the "vmt" field pointer to the actual VMT table.

 I must add that my iterators differ a bit from STL

iterators in that I do not explicitly provide output

iterators, this is, iterators used to store more values

in the container. I believe that an iterator should

never change the value stored in the container, but

the architects of the STL had a different opinion.

Besides, C does not have enough expressive power

to use output iterators in a meaningful way, as

opposed to C++, where they can be used to load the

container seamlessly from a string, or from another

container.

Implementing other iterators

 Listing 7 and Listing 8 are the definition and

implementation for the "order" iterator. There are

some implicit rules to follow when naming each of

the iterator operations, as otherwise the macros in

iterator. h would not function properly. As C does not

have name overloading, we need to prepend the

name of the container, "list" in this case, to the name

of the iterator, "order", to obtain the full iterator, type

name: "list order". In addition, the name of each

operation includes, at the end, the name of the

iterator. For example, the bind () operation for

'order" is called "bind order ()".

In the definition of each operation I used the macro

iterator (), defined in iterator, h, that yields the type

of its "vmt" field. This is the field macro vmt self ()

works on, by getting a pointer to the whole iterator

from a pointer to its VMT.

In iterator order's implementation, I use a vector of

list positions, which I bubble sort. When bind order

(&L, &I.vmt) is invoked, it will allocate an array where

one "lpos" would be stored for each element in the

list; this is the array that is sorted. The purpose of

"bind ()" is to associate the iterator with its container.

Note that operation next order () advances in this

vector but when it gets past the end, the dynamic

memory in used by the iterator is immediately

released. Hence, it is improper to invoke here order(

) when f inishedorder () no longer returns FALSE,

because the vector of positions would no longer be

available.

 Note also that operation finished () can be called

as many times as needed, as it never changes the

value of the iterator: that task is reserved for bind (),

that sets the iterator to its first position, and next (),

that moves on forward.

 Even though these iterators are quite efficient,

they do not really access list's private data fields. For

example, if the list where implemented as an array,

and each position lpos where an array index, then

the same implementation for each each of the

iterators would work seamlessly with this other list

type. Due to space limitations, this other list

implementation did not get printed, but nonetheless

keep in mind that you will not always need to break

the data abstraction to achieve efficiency: do it only

when required.

 An iterator always does a lot of pointer juggling.

Examine carefully the bubble sort in bind order (),

that transforms positions into value pointers, to later

invoke a function to tell whether the corresponding

values are in order. A special comparison function,

I->fcmp (), must be provided when the iterator is

initialized, through init order (). Its definition is similar

to the comparison function that the standard qsort (

) receives as its last argument. Note that list

positions are first transformed into pointed values by

invoking list retrieve (), and then those are the

pointers handed to the comparison function I->fcmp

().

 After implementing iterator "order", I set up to

implement "backl", to traverse the list backward. I

used a vector as in "order", but this time instead of

ordering the position pointers, I just stored them

backwards. Because of this, I just copied most of the

operation implementations from "order. C" into

"backl. C", but I had to twickle bind backward (). I

also had to change some identifiers from "order" to

"backward".

You can download all the code in this article from the

Internet, including that not printed. If you are typing

the code, and you did not get yet the backward

iterator, you can nevertheless compile "c-iter. c" by

commenting out the following line:

#include "backl.h"

Acta Académica 19 Mayo 2000

Listing 1: c-iter.c

Conclusion

 A little macro tweaking with some pointer jugging

yields iterators good enough for most applications. It

is always better to implement them in an OOP

language, like Embedded C++[Pla-97] or C++, but

with a little care a programmer can build a container

library in C that is efficient and provides some of the

better features found in more complicated libraries,

like the C++ STL. You can download all the code in

this article from:

http://www.di-mare.eom/adolfo/p/src/c-iter.zip

Acknowledgments

 Both Ronald Arguello and Carlos Loría took the

time to critizice and earlier version of this paper.

Later, Bjarne Stroustrup told me that only when

forced should one decide to use C instead of C++,

and that STL iterators are more efficient than the

ones I present here. I agree with him.

This research was made in project 326-98-391

"Polimorfismo uniforme más eficiente", funded by

Vicerrectoría de Investigación in the Universidad de

Costa Rica. The Escuela de Ciencias de la

Computación e Informática has also provided

funding for this work.

Bibliography

[BSG-92] Bingham, Bill & Schlintz, Tom & Goslen,

Greg: OOP without C++, C/C++ User's

Journal, Vol.10, No.3, pp [31, 32, 34, 36, 39,

40], March 1992.

[Pla-96a] Plauger, P. J.: The Header <iterator>,

Part 1, C/C++ User's Journal, Vol.14, No.4,

pp [8, 10, 12, 14, 16], April 1996.

[Pla-96b] Plauger, P. J.: The Header <iterator>,

Part 2, C/C++ User's Journal, Vol.14, No. 5,

pp [8, 10, 12, 14, 16], May 1996.

[Pla-97] Plauger, P. J.: Embedded C++, C/C++

Users Journal, Vol. 15 No. 2, pp [35 39],

February 1997.

[Ste-95] Stevens, Al: Alexander Stepanov and

STL, Dr. Dobbs's Journal, No. 228, pp

[118,123], March 1995.

 http: / / www.sgi.com/ Technology / STL /

drdobbs-interview.html

[Str-88] Stroustrup, Bjarne: What is Object-Oriented

Programming, IEEE Software, pp [10, 20],

May 1988.

 http://www.research.att.com/~bs/whatis.ps

Acta Académica 20 Mayo 2000

Acta Académica 21 Mayo 2000

Acta Académica 22 Mayo 2000

Acta Académica 23 Mayo 2000

Acta Académica 24 Mayo 2000

Acta Académica 25 Mayo 2000

Acta Académica 26 Mayo 2000

Acta Académica 27 Mayo 2000

Acta Académica 28 Mayo 2000

Acta Académica 29 Mayo 2000

Acta Académica 30 Mayo 2000

